
Server fingerprinting
How I broke most famous recon tools and made the

script kiddies sad

@0x48pirajPage 1

@0x48pirajPage 2

● Undergraduate student at --REDACTED-- University
● Google Code In Contribution Winner, GSoC ‘19 Intern

OWASP Foundation, Open source enthusiast
● Independent security researcher, have given chronic

nightmares to Canon (CVE-2019-14339), Motorola, IIT-B,
IIT-M, Cornell, United Nations, Mozilla Firefox (Android &
iOS), Opera Mini (Android), NodeJS modules, Samsung, LG
Electronics, Dutch & Indian Govt.

● cat > bio.info

 … more uninteresting information goes here

CTRL + Z
 [1]+ Stopped cat > bio.info

$ whoami

@0x48pirajPage 3

Came in yesterday, got in my lovely room (thanks, BSides team), went
on to “review” my presentation, my network was struggling with poor
signals and thought about using Vivanta’s (SSID: Vivanta_Dwarka)
awesome WiFi Network.

$ whoami, cont.

@0x48pirajPage 4

Eh, just room number and last name?

Numerous natural options popped in instantly -

1. Social engineering (I’m looking for “xyz”, can you please help?)
2. Bruteforce attack (is it 203?, 302?, 230? Yes!)
3. Dictionary attack
4. Social engg. + Bruteforce (Excuse me, can you look for “xyz”?)
5. Information leakage (dumpster diving?)
6. Exploring the target web-app looking for vulnz

$ whoami, cont.

@0x48pirajPage 5

$ whoami, cont.
left-over test code found during brute-forcing obvious directories.

@0x48pirajPage 6

$ whoami, cont.
Fortunately or unfortunately (depends on your perspective), the error
prevented further exploitation.

During testing, I also found Trace.axd which said,

@0x48pirajPage 7

$ whoami, cont.

Found multiple endpoints during my assessment -

● 192.168.15.2 (http://192.168.15.2/TajSLPV3/)
● 124.153.110.196 (http://124.153.110.196/TajMemberNew/*)
● 192.168.15.3 (very interesting)
● More ...

@0x48pirajPage 8

$ whoami, cont.
Essentially, the login structure of the URL was,

http://192.168.15.2/TajSLPV3/mifilogin.aspx?encry
=VUk9MDJkMjI2JlVVUkw9aHR0cDovLzE---REDA
TED---NTkmT1M9aHR0cDovLzE5Mi4xNjguMTUu
My8mU0M9MTg4ODc=

Yeah, so it’s basically,

http://192.168.15.2/TajSLPV3/mifilogin.aspx?encry
=BASE64_CHUNK

@0x48pirajPage 9

$ whoami, cont.

Decoding the BASE64_CHUNK gave something like,

When Unauthenticated

UI=02d226&UURL=http://192.168.15.3:1111/usg/userok.htm&MA=D0F88C
AAF6AB&RN=80&PORT=80&RAD=no&PP=no&PMS=no&SIP=10.0.2.159&
OS=http://192.168.15.3/&SC=18887

When Authenticated

&UI=02d226&UURL=http://192.168.15.3:1111/usg/userok.htm&MA=D0F88
CAAF6AB&RN=80&PORT=80&RAD=no&PP=no&PMS=no&SIP=10.0.2.110
&OS=http://www.msftconnecttest.com/redirect&SC=25869&logid=7C2A313
9608901012019661143827

@0x48pirajPage 10

$ whoami, cont.

Demystifying the process flow

1) User connects to the WiFi

2) When certain user launches browser, he/she gets redirected by the
Nomadix to Taj’s portal page, Nomadix redirects the user through a user ID
for the session (their MAC address)

Eg: http://IP_ADDRESS:1111/usg/userok.htm?MA=

Yep, the MA parameter holds device’s MAC address.

@0x48pirajPage 11

$ whoami, cont.
3) The client website checks to see if certain MAC address has been
captured before if it has, immediately makes a POST to Nomadix, if the
MAC address has not been captured before then it asks for user info
(e.g. Room, Last name).

On successful authentication the Web server tells the Nomadix Gateway
that certain user can use the internet (service levels are defined). This is
done from the web server as a POST to one of the following addresses:

http://:1111/usg/command.xml
http://:1112/usg/command.xml

4) The Nomadix then manages certain user’s session until it expires.

@0x48pirajPage 12

$ whoami, cont.
Testing time, capturing the encry= parameter from an authenticated user, i.e.
my laptop, decoding, modifying the MAC address, encoding again, then
taking another device, and triggering our newly crafted payload results in:

http://www.youtube.com/watch?v=AbijrYryzms

@0x48pirajPage 13

And we all know how to collect lots and lots of
MAC addresses, as MAC addresses are sent
unencrypted. The reason for this is, MAC
addresses are part of the OSI Data Link layer
(level 2) and are visible in packets even if
encryption such as WEP / WPA2 is used.

Commands:

wlan=`iw dev | awk '$1=="Interface"{print $2}'`

tshark -a duration:100 -i $wlan -T fields -e

eth.src | sort | uniq

$ whoami, cont.

@0x48pirajPage 14

The following “greet message” pretty much covers as our
Addendum

Dear Guest,

Welcome to Taj Connect, an online facility which allows you to
navigate through our innumerable hotel services. For your
convenience, you can connect to our wireless network from
anywhere in this hotel, and access the internet on multiple
devices by selecting the respective plan on the given device.

$ whoami, cont.

@0x48pirajPage 16

● How famous reconnaissance tools work
● Current fingerprinting methods
● Bad jokes, obviously
● Screwing with script kiddies

(everyone’s dream, right?)

This talk contains

@0x48pirajPage 17

● How famous reconnaissance tools work
● Fingerprinting methods
● Bad jokes, obviously
● Screwing with script kiddies

(everyone’s dream, right ?)

This talk contains

Providing
“defensive strategies”

to companies

@0x48pirajPage 18

This research presented herein was conducted and completed as an
independent researcher, none of the research presented herein was
conducted under the auspices of my current organisation.

The views, information and opinions expressed in this presentation and
it's associated research paper are mine only and do not reflect the views,
information or opinions of my current organisation.

DISCLAIMER

@0x48pirajPage 19

There are several different vendors and versions
of web servers on the market today.

Knowing the version and type of a running web
server allows testers to determine known
vulnerabilities and the appropriate exploits to use
during testing.

So, what’s going on?

@0x48pirajPage 20

That very process is called web application
fingerprinting, identifying the type/version of the
web server/application.

Okay, but, what is server fingerprinting?

@0x48pirajPage 21

By knowing how each type of web server
responds to specific payload (i.e. request) and
keeping this information in a fingerprint database,
a tester can send these payloads to the web
server, analyze the response, and compare it to
the database of known signatures revealing useful
information. (i.e. tech-stack/server/app/OS)

More on “how”

@0x48pirajPage 22

Many types of fingerprinting methods.

❏ Operating system or say, TCP/IP stack (Nmap)
❏ Web-stack (Wappalyzer, BuiltWith, etc.)
❏ Protocol based

❏ e.g. HTTP protocol behaviour (best*)
❏ e.g. HTTP response header

❏ --INSERT--

Let’s not confuse

*with statistical analysis, combined with fuzzy logic techniques

@0x48pirajPage 23

Collection of configuration attributes from a remote
device during standard layer 4 network
communications. The combination of parameters
may then be used to infer the remote machine's
operating system. Two types of methods are used,

1. Active fingerprinting
2. Passive fingerprinting

Let’s talk about OS fingerprinting

@0x48pirajPage 24

Active fingerprinting is accomplished by sending
specially crafted packets to a target machine and
then noting down its response and analyzing the
gathered information to determine the target OS.

Passive fingerprinting is based on sniffing traces
from the remote system and determining the
operating system of the remote host.
(not used by Nmap)

Active/Passive

@0x48pirajPage 25

TCP/IP fields which are used in fingerprinting,

● Initial packet size (16 bits)
● Initial TTL (8 bits)
● Window size (16 bits)
● Max segment size (16 bits)
● Window scaling value (8 bits)
● "don't fragment" flag (1 bit)
● "sackOK" flag (1 bit)
● "nop" flag (1 bit)

Just inspecting the Initial TTL and window size fields is often enough
in order to successfully identify an operating system.

@0x48pirajPage 26

Nmap fingerprints a system in three steps,

● Performs a port scan to find a set of open and
closed TCP and UDP ports.

● Generates specially formed packets, sends
them to the remote host, and listens for
responses. (performs 7 tests)

● Uses the results from the tests to find a
matching entry in its database of fingerprints.

Generalized Nmap Working

@0x48pirajPage 27

For fooling Nmap, or any other OS fingerprinting
tool, we will have to make patches to the Linux
kernel because the aim is to change Linux TCP/IP
stack behavior, and if we want to achieve it, we
need to do it in the kernel layer.

Fooling OS fingerprinting tools ‘how-to’

@0x48pirajPage 28

● A practical approach for defeating Nmap
OS-Fingerprinting by David Barroso Berrueta
(Google “defeat-nmap-osdetect”)

● Defeating TCP/IP Stack Fingerprinting by Matthew
Smart G., Robert Malan and Farnam Jahanian from
University of Michigan (9th USENIX Security
Symposium Paper 2000)

There are cool modules available such as IP Personality
(don’t use Fingerprint fucker) which work out-of-the-box so
writing from scratch doesn’t makes too much sense.

Existing Research

@0x48pirajPage 29

Wappalyzer
Wappalyzer is a cross-platform utility that
uncovers the technologies used on websites.

@0x48pirajPage 30

Wappalyzer has Chrome and Firefox extensions.

The favourite tool for script kiddies

@0x48pirajPage 31

Wappalyzer is free and open-source. The source
code is available under the GPL v3 licence.

Open-source <3

@0x48pirajPage 32

● Code structure of the Wappalyzer
● Understanding the repository at high level
● Internal workings
● Finding vulnerabilities
● Attacking the application

Deep diving into the code

@0x48pirajPage 33

St
ru

ct
ur

e

@0x48pirajPage 34

Interesting files to look into:

● Wappalyzer/src/wappalyzer.js
● Wappalyzer/src/apps.json
● Wappalyzer/src/drivers/*.*

○ Wappalyzer/src/drivers/webextension/js/*.*

Deep diving into the code

@0x48pirajPage 35

Deep diving into the codeWappalyzer/src/wappalyzer.js

@0x48pirajPage 36

Deep diving into the codeWappalyzer/src/apps.json

@0x48pirajPage 37

Structure of apps.json

root node

categories sub-node

apps sub-node

@0x48pirajPage 38

From seeing the code, it’s trivial to conclude that
the application uses custom regex/regexp to parse
specific features, validates using apps.json which
holds lots and lots of “patterns”, uses fancy
function named getConfidence() to calculate the
confidence score.

● AliasIO/Wappalyzer/src/wappalyzer.js#L105

Pattern matching is CoOL

@0x48pirajPage 39

???

@0x48pirajPage 40

Which programming language to write the fuzzer ?

● C, Java
● Javascript
● PHP
● Python

Testing slash Fuzzing

@0x48pirajPage 41

Sorry for this slide, had too much of coke

Choosing language

@0x48pirajPage 42

Choosing language

thank u, next

@0x48pirajPage 43

Choosing language
JS Object Model is just great.

❏ Strings
❏ "WAT" + 1 >>> "WAT1"
❏ "WAT" - 1 >>> NaN

❏ Dict
❏ [] + {} >>> [object Object]
❏ {} + [] >>> 0

❏ [] == [] >>> false (Obviously.)

@0x48pirajPage 44

The carbon-dated option

Choosing language

@0x48pirajPage 45

Let’s get Pythonic

@0x48pirajPage 46

Found Python module
named rstr

It has a xeger() method
which allows creating a
random string from a
regular expression.

Regex - Regex

https://bitbucket.org/leapfrogdevelopment/rstr

@0x48pirajPage 47

Unfortunately, it has a bug, which causes what I
call “length explosion”, basically the length of
string generated from various RegEx(s) tend to go
up and up. I fixed i, and then found Xeger
(https://pypi.org/project/xeger/)
>>> from xeger import Xeger
>>> x = Xeger(limit=10) # default limit = 10
>>> x.xeger("/json/([0-9]+)")
u'/json/15062213'

Esoteric rstr bug

@0x48pirajPage 48

bug in action

@0x48pirajPage 49

Generated tons of header-patterns and spewed those crafted server
headers all over a bare-bone script on top of Python
SimpleHTTPServer

Initial testing

@0x48pirajPage 50

Results ?

@0x48pirajPage 51

Wappalyzer going crazy

@0x48pirajPage 52

Started coding a command-line application which,

1. pull the latest apps.json from the official
repository

2. parses all objects from apps sub-node
3. processes list of RegExs making them

payloads
which then can be utilised via either embedding them into the front-end
(website) or in back-end (server)

Get ready for a major remodel fellas

@0x48pirajPage 53

We went through a list of names though:

1. WAPDEAD
2. Wappalyzer-seizure
3. Weizure (transcended from No. 2)
4. Confulyser (WAP-Confuse)
5. WAP-DESTROY-INATOR (Phineas and Ferb)

Introducing Wapparalyser

@0x48pirajPage 54

➔ Support for
◆ Emulating services

● Random
● All
● Certain tech-stack (e.g. MEAN, LAMP)

➔ In-built small fuzzer for Wappalyzer
● Blind
● metadata|js|scripts|html|headers|cookies

Features of Wapparalyser

@0x48pirajPage 55

THE DEMO

@0x48pirajPage 56

Impact of Wapparalyser

1. Breaks a company with $10M in estimated
revenue annually, making their tech obsolete.

2. Shows current posture of a famous recon tool.
3. Describes the brittle nature of current

methodologies.
4. Most probably, just another security tool which

will get dusty over time.

@0x48pirajPage 57

Open Source == <3

Wapparalyser will be released under MIT license
and can be found after this talk on my GitHub,
0x48piraj/wapparalyser

I’ll probably whine about the bugs/features on
Twitter, so, you will get to know, easily.

@0x48pirajPage 58

Messing with script kiddies

@0x48pirajPage 59

Messing with script kiddies

We all have coded exploits which go something
like,

response = requests.get('http://target.com')

if response.status_code == 200:

 print('Success!\nRunning our 1337 exploit...')

 pwn(response)

elif response.status_code == 404:

 print('Target Not Found. Quitting.')

@0x48pirajPage 60

Messing with script kiddies
The typical what I called “script-kiddie cycle”

● We release our exploits.

● Script kiddie goes to repository, blog, the source!

● Does CTRL+C then CTRL+V into his Notepad.

● Saves the file, tries to run the script ...

● Cries in the corner if we intentionally broke some parts

in our exploit.

@0x48pirajPage 61

Messing with script kiddies

1. What if we can break those exploits (?)

2. What if we can break security tools used for

reconnaissance

Disclaimer: I don’t support “Security by Obscurity” in any sense but if you can

increase time and money of an attacker and shoo away script kiddies without

much effort, then I don’t see why not !?!

@0x48pirajPage 62

Their most favourite tool

@0x48pirajPage 63

Messing with script kiddies
Do you know how often does Metasploit reference status

codes?

grep -r -E 'res[p|ponse]?\.code' * | wc

Grep search for,

● res

● resp

● response
NOTE: The method is not reliable as it depends on how we name things.

@0x48pirajPage 64

Messing with script kiddies
For keeping this research “latest”, I cloned msf master repository

today. (I’ve to admit, having a cloud server is handy)

@0x48pirajPage 65

Messing with script kiddies
How can we break all the exploits ?
response = requests.get('http://target.com')

if response.status_code == 200:

 print('Success!\nRunning our 1337 exploit...')

 pwn(response)

elif response.status_code == 404:

 print('Target Not Found. Quitting.')

Let’s suppose this is an exploit which our server is vulnerable of, if we

send a 404 response code, this very exploit will FAIL

@0x48pirajPage 66

Messing with script kiddies
Same goes for,

● Scanners

● Web crawlers

● Web-App security suites

If we’re able to change the response

codes, we will create HAVOC (flood

of false-positives)

@0x48pirajPage 67

Messing with script kiddies
This can be easily done by using HTTP Handler (reverse

proxy) that takes an incoming request and sends it to

another server, proxying the response back to the client.

Returns any response, with any HTTP status code.

@0x48pirajPage 68

What can be done?
Current methods for fingerprinting are very susceptible to

attacks we discussed.

The most cheap reliable option is to do multiple tests with

statistical analysis, combined with fuzzy logic techniques

as we always have to make a security trade-off.

SECURITY vs RESOURCES/COST

@0x48pirajPage 69

What can be done?
New methods are also being developed, some utilizing machine

learning.

● Deep Fingerprinting: Undermining Website Fingerprinting

Defenses with Deep Learning (Attacking TOR with DL)

● Automated Website Fingerprinting through Deep Learning

● Deep Web Server Fingerprinting via analysing code-base &

code-use (will publish the pre-print soon)

@0x48pirajPage 70

Gist of this research
❏ Too much RegEx matching is bad

❏ Heavy reliance on status code leads to the

dark side

❏ New methods for fingerprinting are sorta cool

❏ And, yeah, trusting MAC addresses for

identification is a bad idea …

Thanks
Piyush Raj | @0x48piraj

https://blog.0x48piraj.com

@0x48piraj End Page

